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GRAPHICAL ABSTRACT 
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ABSTRACT 
Dynamic economic dispatch (DED) is a method to schedule the 
online generator outputs with the predicted load demands over 
a certain period of time so as to operate an electric power 
system most economically. Normally in all economic dispatch 
(ED) problems, it is assumed that the incremental cost curves 
of the units are monotonically increasing piece-wise linear 
function. In fact, discontinuity may also be observed in thermal 
power plants due to valve point loading. As the conventional 
optimization methods require the objective functions in 
continuous differentiable form, they fail to solve these types of 
problems. This paper presents a new approach using 
Comprehensive Learning Particle Swarm Optimization (CLPSO), 
a variant of Particle Swarm Optimization (PSO), for solving the 
DED problem of generating units having non-smooth fuel cost 
functions. In this approach, each particle learns from different 
particles’ historical information for different dimensions for a 
few generations. This strategy ensures that the diversity of the 
swarm is preserved to discourage premature convergence. The 
proposed method is implemented for solving few example 
dispatch problems having non-smooth fuel cost functions as 
either in the form of sine function model into the objective 
function or with prohibited operating zones. The results of 
CLPSO are compared with those of Evolutionary Programming 
(EP), Genetic Algorithms (GA) and simple PSO. The simulation 
results show that the proposed CLPSO method is indeed 
capable of finding higher quality solution efficiently in non-
convex ED problems. 

© 2015 VFSTR Press. All rights reserved                                 2455-2062 | http://dx.doi.org/xx.xxx/xxx.xxx.xxx | 
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1. INTRODUCTION 

The process of scheduling generation to minimize 

the operating cost is called economic dispatch. In 

this calculation, the generation costs are 

represented as curves, usually piecewise linear, and 

the overall  calculation minimizes the operating 

cost by finding a point where the total output of 

the generations equals the total power that must 

be delivered and where the incremental cost of 

power generation is equal for all generators. 

However, if a generator is at its upper or lower 

limit, that generator’s incremental cost is different. 

Various mathematical programming methods and 

optimization techniques have been applied to ED. 

Most of these are calculus-based optimization 

algorithms that are based on successive 

linearization and use the first and second 

differentiations of objective function and its 

constraint equations as the search directions [1]. 

They usually require the heat input-electric power 

output characteristics of generators to be of 

monotonically increasing nature or of a piecewise 

linearity. However, large modern generating units 

with multi-valve steam turbines exhibit a large 

variation in the input-output characteristic 

functions. The valve-point effects, owing to wire 

drawing as steam admission valve starts to open, 

typically produce a ripple-like heat rate curve. 

Moreover, to keep thermal gradients inside the 

turbine within safe limits and to avoid shortening 

the life, the rate of increase/decrease of the power 

output of generating units is limited within a range. 

Such ramp rate constraints make the conventional 

ED problem as a dynamic one. The conventional 

optimization methods are not suitable to solve 

such a problem. Hence, more general approaches 

are needed without restrictions on the shape of 

fuel cost functions. 

Dynamic programming (DP) solution is one of the 

approaches to solving the inherently non-linear and 

discontinuous ED problem [2]. However, the 

dimensions of the problem would become 

extremely large with the increase of the variables 

(curse of dimensionality).  Methods such as 

Simulated Annealing (SA) [3], GA [4] and EP [5, 6] 

have been proposed to solve such nonsmooth ED 

problems. P. Attaviriyanupap et al. have applied 

Hybrid EP to solve DED problem [7]. These 

methods have the advantage of searching the 

solution space more thoroughly. However, the 

main difficulty is their sensitivity to the choice of 

parameters, such as temperatures in SA, the cross 

over and mutation probabilities in GA and scaling 

factor in EP. 

 

Particle swarm optimization, first introduced by 

Kennedy and Eberhart [8], is one of the modern 

heuristic algorithms. It was developed through 

simulation of a simplified social system, and has 

been found to be robust in solving continuous 

nonlinear optimization problems [8]–[12]. The PSO 

technique can generate high-quality solutions 

within shorter calculation time and stable 

convergence characteristic than other stochastic 

methods [9]–[12]. Although the PSO seems to be 

sensitive to the tuning of some weights or 

parameters, many researches are still in progress 

for proving its potential in solving complex power 

system problems [11]. Researchers including 

Yoshida et al. have presented a PSO for reactive 

power and voltage control considering voltage 

security assessment. The feasibility of their method 

is compared with the reactive tabu system (RTS) 

and enumeration method on practical power 

system, and has shown promising results [13]. Naka 

et al. have presented the use of a hybrid PSO 

method for solving efficiently the practical 

distribution state estimation problem [14]. Z.L. 

Giang has solved ED problem with generator 

constraints using simple PSO [15]. J.B. Park et al. 

[16] have proposed a modification in PSO to deal 

equality and inequality constraints of ED problem 

with nonsmooth fuel cost functions. 

In this paper, a new PSO variant, called CLPSO is 

employed, which alleviates the problem of 

premature convergence in PSO. In this approach, 

each particle learns from different particles’ 

historical information for different dimensions for a 

few generations. This strategy ensures that the 

diversity of the swarm is preserved to discourage 

premature convergence. The proposed method is 
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implemented for solving few example dispatch 

problems having nonsmooth fuel cost functions as 

either in the form of sine function model into them 

or with prohibited operating zones. The results of 

CLPSO are compared with that of  EP, GA and 

simple PSO.  

This paper is organized as follows: The DED 

problem formulation is given in Section II. An 

introduction to CLPSO is given in Section III. 

Application of CLPSO method to DED problem is 

given in Section IV. Numerical tests and their results 

on five test systems from the literature are given in 

Section V. Finally, a conclusion is made in Section 

VI. 

2. PROBLEM FORMULATION 

The dynamic ED problem can be described as an 
optimization process with the following objective 
function and constraints: 

)1(min
1 1

H

h

N

i

ihih PFF  

The fuel cost functions of the generating units are 
generally characterized by second-order 
polynomials as 

)2(2

ihiihiiihih PcPbaPF  

To model the steam admission valve point effect, a 
recurring rectified sinusoidal contribution is added 
to the second-order polynomial function to 
represent the input-output equation [4]. Thus (1) 
becomes   

)3(sinmin
1 1
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2
H

h

N

i

iihiiihiihii PPfePcPbaF  

The cost is optimized with the following power 
system constraint 

)4(,....,1,0
1

HhPPP LDh

N

i

ih
  

The inequality constraint on real power generation 

Pi of each generator i is 

)5((max)(min) iii PPP  

  The ramp rate constraint imposed on it is 
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The input-output curve of a generator may also be 

represented with prohibited operating zones. 

These are also due to steam valve operation or 

vibration in shaft bearing. Since it is not easy to 

determine the prohibited zone by actual 

performance testing or operation records, the best 

economy is achieved by avoiding operation in areas 

that are in actual operation.  To solve such ED 

problems with prohibited operating zones (3) is 

rewritten as (1) and so is subjected to (4), (5) and 

(6). The feasible operating zones of unit i can be 

described as follows: 

max

,

,1,

1,(min)
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where l
jiP , and u

jiP ,  are the lower and upper bounds 

of the j-th prohibited operating zone of unit i and ni 

is the number of prohibited zones of unit i. 

The notations used above are, 

F : the operating cost, 

H : number of hours in the study horizon, 

N : the number of generating units, 

Pih : the power output of i-th generating unit at 

h-th hour, 

Fih(Pih) : the fuel cost function of i-th unit at h-th 

hour, 

PDh : the demand at h-th hour, 

PL : the transmission losses in the system, 

URi : ramp-up rate of i-th generating unit, 

DRi : ramp-down rate of i-th generating unit, 

Pi(min) : minimum generation capacity of i-th 

generating unit, 

Pi(max)      : maximum generation capacity of i-th 

generating unit. 

3.  COMPREHENSIVE LEARNING PSO 

Particle swarm optimization developed by Eberhart 
and Kennedy [17] is one of the evolutionary 
computation techniques. PSO, like GA, is a 
population based optimization algorithm. The 
swarm initially has a population of random 
solutions. Each potential solution, called particle, is 
given a random velocity and is flown through the 
problem space. The particles have memory and 
each particle keeps track of its previous best 
position, called pbest and corresponding fitness. 
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The swarm remembers another value called gbest, 
which is the best solution discovered by the swarm. 
Velocity and position of the particles are changed 
according to the equations (8) and (9) respectively. 

)8())()((**

))()((*)()(

2

1

dXdgbestrandc

dXdPbestrandcdwVdV

j

jjj

)9()()()( dVdXdX jjj
 

where Vj(d) and Xj(d) represent the velocity and 

position of d-th dimension of j-th  particle 

respectively and rand is a uniform random number 

in the range [0,1].  

Though there are numerous PSO variants, 

premature convergence is still the main deficiency 

of the most PSO based algorithms[18]. In the 

original PSO, each particle learns from its pbest and 

gbest simultaneously and its social learning factor is 

restricted to only gbest. Furthermore, all particles 

in the swarm learn from the gbest even if the 

current gbest is far from the global optimum. In 

such situations, particles may easily be attracted 

and trapped into an inferior local optimum if the 

search environment is complex with numerous 

local solutions. 

As the fitness value of a particle is decided by all 

dimensions, a particle which has discovered the 

value corresponding to the global optimum in one 

dimension may have a low fitness value because of 

the poor solutions in other dimensions. This good 

genotype may be lost in this situation. In order to 

prevent this, different novel learning strategies are 

adopted [18]. It differs in two main aspects 

compared to many present PSO variants: 

1) Instead of learning from two exemplars 

namely the pbest and gbest in every iteration in the 

original PSO as in equation (8), each dimension of a 

particle learns from just one exemplar for a few 

iterations.  

2) Instead of learning from the pbest and gbest 

for all dimensions, each dimension of a particle in 

general learns from a different pbest for different 

dimensions for a few iterations. 

In CLPSO, for each particle, besides its own pbest, 

other particles’ pbests are used as exemplars. Each 

particle learns from potentially all particles’ pbests 

in the swarm. During the search process, it is not 

known which dimensions of each particle’s pbest 

are good or bad. Therefore, each dimension of a 

particle has equal chance to be learnt by other 

particles. For each particle, some dimensions of 

other particles’ pbests are randomly chosen 

according to a probability Pc, called learning 

probability, as social exemplars to be learnt from, 

while other dimensions learn from its pbest, as 

cognitive exemplar. Here, for each particle, a 

different velocity updating is used: 
)10())()((*)(*)( )( dXdpbestranddVwdV jdfijj  

 Where, pbestfi(d)(d) could be any particle’s pbest or 

its own pbest, and the decision depends on Pc. Pc 

decides which dimension will learn from the other 

particle’s pbest and which dimension will follow the 

particle’s own pbest. Each particle has its own Pc, 

which could be different from that of other 

particles. For each dimension of particle j, a random 

number is generated. If this random number is 

larger than Pc of j-th particle, then this dimension 

will learn from its own pbest, otherwise it will learn 

from another particle’s pbest. When a dimension of 

one particle learns from other particle’s pbest is as 

follows: 1) Two particles are randomly chosen out 

of the population, which excludes the particle 

being updated, 2) The fitness values of these two 

particles’ pbest are compared, and 3) Then the 

winner’s pbest is used as the exemplar for that 

dimension. If all exemplars of a particular particle 

are its own pbest, then one dimension is randomly 

selected to learn compulsorily from other particle’s 

pbest.  

The weighting function w is determined by an 

annealing procedure, which makes uniform search 

in the initial stages and very local search in the 

latter stages. The weighting function wk for k-th 

iteration is determined by  

)11(9.02.0
max_

)(max_)2.0(
o

o
k w

iter

kiterw
w  

 During the process, the velocity of each particle is 

clamped according to the following equation (12). 
)12())(),(max(),(min()( maxmax dVdVdVdV ij

 

and Vmax is set as 0.25 (Xmax – Xmin), after 

experimentation. 
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This learning strategy from different particles’ 

pbests for different dimensions increases the 

particles’ initial diversity and enables the swarm to 

overcome premature convergence problem. 

4.  CLPSO IMPLEMENTATION IN ED PROBLEM 

Step 1: Initialization 

A set of candidate solutions, called ‘particles’, is 

randomly created in d-dimensional space. This set is 

referred to as ‘swarm’. This initial vector is denoted 

as Xj. For example, the position of j-th individual can 

be represented as  
)13(,...,2,1]...,,[ 21 mjPPPX jdjjj

 

and the velocity is described as,  
)14(,...,2,1]...,,[ 21 mjVVVV jdjjj
 

where m is the population size and d is the number 

of generators. 

 

Step 2: Fitness function 

Fitness function is directly called from the objective 

function. Each individual’s fitness value is compared 

with its pbest. The best value among the pbests in 

the swarm is denoted as gbest.  

 

Step 3: Velocity modification 

The velocity of each particle is modified according 

to (10).  

 

Step 4: Position modification 

The position of each individual is modified 

according to (9). 

  

 

Step 5: Constraints handling 

The new position of particles found in previous 

step must satisfy all the operating constraints. 

Equality constraint (4) is handled by 

)15(....,,2,1,

2

1 HhPPP

N

i

ihDhh
 

The capacity constraints of the first unit are 

handled by adding them into the objective function 

using penalty factor (ψ1). A dummy variable P1lim is 

used to find the amount of violation of equality 

constraint and is defined as 

)16(

otherwise

if

if

1

max11max1

min11min1
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h

h

h

P

PPP

PPP

P  

The capacity constraints and operating ramp rate 

constraints are simultaneously handled by adding 

another penalty factor (ψ2) into the objective 

function. Here another dummy variable Pr lim is used 

to find the amount of violation and is defined as  

)17(

otherwise

if,min

if,max

111max1

111min1
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ih

ihihihi

ihihihi

r

P

URPPURPP
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The penalty factors ψ1 and ψ2 are added into (1) to 

form a generalized objective function as  

)18(
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The above generalized objective function is used as 

fitness function. 

If the problem is considered with prohibited 

operating zones, instead of introducing a penalty 

term into the objective function for each of the unit 

loadings falling within the prohibited operating 

zones, the following procedure is adopted.  

The mid-points of the prohibited zones for each 

generator are calculated. For a generator level 
'

iP lying between u
niP , and l

niP , , the mid-points of the 

prohibited operating zone is  

)19(,...3,2,1for
2
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, i

l
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u
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PP
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l
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'
,

' if  
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u
nii MPPP ,

'
,

' if  

Step 6: Individual best update & global best update 

If the fitness value of each individual is better than 

the previous pbest, the current value is set to be 

pbest. If the best pbest is better than gbest, the 

value is set to be gbest. 
 

Step 7: Stopping criteria 

If the number of iterations reaches set value, then 

the individual that generates the latest gbest is the 

optimum generation output power of each unit 

with minimum total cost. 
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5.  NUMERICAL RESULTS 

To assess the feasibility and efficiency of the 

proposed method, it has been applied to five 

example test problems from the literature, in which 

the generating units are having nonsmooth fuel 

cost functions. The first two test systems, one with 

13 units and another with 40 units are considered 

without ramp rate limits. The third example, 10-unit 

system, considered with ramp rate limits is studied 

over a study horizon of 24 hours. These three 

systems’ objective functions are modeled with sine 

function to reflect valve-point loading effect. The 

next two systems are studied with prohibited 

operating zones. For the purpose of comparison, 

the study horizon is considered for one hour only in 

these two test systems. The program was coded in 

MATLAB and the simulations were carried out on a 

Pentium III, 850MHz, 128 RAM PC.  

 

A.  ED problems having nonsmooth cost functions 
with sine function model 

Firstly, the CLPSO method is applied to two ED 

problems, one with 13 generators and another with 

40 generators where valve-point loading effects 

are included as sine function model for both 

problems. The input data for 13-generator system 

are taken from [19] and those for 40-generator 

from [20]. For 13-generator system, the total 

demand is 1800MW and 2520MW as in [20] and 

[21]. Transmission losses are not considered.  

 

The control parameters used in CLPSO method 

are as follows: 

population size       50 

number of iterations    100 

The results obtained from the CLPSO method are 

shown in Table I. A comparison between the CLPSO 

method and other methods such as CEP, FEP, MFEP 

and IEP for a demand of 1800MW and GA, EP and 

IEP for a demand of 2520MW are made in Tables II 

and III respectively. As seen in the tables II and III, 

the proposed method is able to produce better 

results. Fig.1 shows the fuel cost variation for these 

two demands in this example. 

Table I : Generation Output for 13-Unit System 
 

Unit 
Demand 

(1800 MW) 
Demand 

(2520 MW) 

1 628.321 628.275 

2 223.951 298.379 

3 298.000 298.986 

4 60.000 159.558 

5 60.000 159.143 

6 60.000 159.717 

7 109.863 159.643 

8 60.000 159.621 

9 109.865 159.732 

10 40.000 76.937 

11 40.000 113.728 

12 55.000 55.000 

13 55.000 91.281 

Cost ($) 17972.92 24177.73 

CPU time (sec) 30.32  50.87  

 

Table II : Comparison of minimum cost($) of various 

methods in 13-Unit system (for a demand of 1800 

MW) 
 

CEP FEP MFEP IFEP CLPSO 

18048.21 18018.00 18028.09 17994.07 17972.92 

 

Table III : Comparison of minimum cost($) of various 

methods in 13-Unit system (for a demand of 2520 

MW) 

GA1 GA2 EP IEP CLPSO 

24416.26 24404.58 24395.50 24395.50 24177.73 
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Fig.1. Fuel cost variation of example 1. 



 

 VFSTR Journal of STEM        Vol. 01, No.02 (2015) 2455-2062 

Mahadevan. K. et al              44 

 

For the 40-generator test system the demand is 

10500 MW as in [16, 20].  

The control parameters used in CLPSO method for 

this 40-generator test system are as follows: 

 Population size     200 

 Number of iterations   200 

The results obtained by the proposed method for 

10500 MW demand along with other two demands 

such as 9000 MW and 7500 MW are shown in Table 

IV. A comparison of results is made in Table V for 

the demand 10500 MW.  It is evident from Table V, 

the CLPSO method has provided better solution 

than various EP methods and Modified PSO 

method. A substantial cost reduction of $725 is 

realized against PSO in this test case due to the 

introduction of learning strategy in PSO proposed 

in this paper. Fig.2 shows the fuel cost variation for 

these three demands in this example. 

 

Table IV : General output for 40-unit system 

 

Unit Generation (MW) 

1 112.520 113.995 111.067 

2 112.573 113.11 109.782 

3 97.410 60.000 60.000 

4 180.011 179.242 80.000 

5 90.190 86.298 47.000 

6 139.980 102.777 68.000 

7 299.957 261.028 254.911 

8 285.132 284.908 283.395 

9 284.505 283.389 283.389 

10 130.036 130.000 130.000 

11 94.611 94.000 94.000 

12 94.262 94.000 94.000 

13 215.852 125.016 125.000 

14 394.202 125.000 125.000 

15 394.318 125.000 125.000 

16 304.666 125.000 125.000 

17 489.431 309.561 220.000 

18 489.658 403.092 220.000 

19 511.066 511.597 242.000 

20 510.447 421.535 242.000 

21 523.364 525.476 523.62 

22 523.541 525.976 513.342 

23 523.53 524.487 524.593 

24 523.264 525.538 521.209 

25 523.234 523.341 522.717 

26 523.452 524.232 431.747 

27 10.252 10.000 10.000 

28 10.014 10.615 10.000 

29 10.572 10.300 10.000 

30 88.086 89.081 88.884 

31 190.000 160.039 190.000 

32 189.935 161.648 160.416 

33 190.000 159.972 160.12 

34 199.100 168.285 90.000 

35 200.000 161.77 90.000 

36 199.648 165.851 90.000 

37 110.000 91.393 106.603 

38 109.900 92.123 89.485 

39 109.946 109.806 85.72 

40 511.335 511.519 242 

Total 
generation 

(MW) 
10500 9000 7500 

Total Cost 
($) 

121527.17 103330.27 88532.14 

CPU time 
(sec) 

728.1 434.6 520.9 

 
Table V : Comparison of minimum cost of various 

methods in 4—unit system 

 

CEP FEP MFEP IFEP MPSO CLPSO 

123488.2
9 

122679.7
1 
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7 
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122252.
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7 
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Fig.2.   Fuel cost variation of example 2 
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B.  DED problem having nonsmooth cost functions 
with sine function model 

The proposed method is applied to obtain DED 

solution for a test system, which has 10 generating 

units. The study horizon is taken as 24 hours. The 

generator characteristics data and demand data 

are taken from [7]. Line losses are neglected.  

 

The parameters used in CLPSO method are with 

population size as 500 and number of iterations set 

as 500. 

 

Table VI shows the generation output of each 

generator at each hour by the proposed method 

and Fig.3 shows its fuel cost variation. A 

comparison is made with earlier reported results in 

Table VII. As seen in Table VII, CLPSO performs 

better than EP and hybrid EP in finding the 

minimum solution.  

 

 

Table VIII lists the maximum cost, minimum cost, 

and average cost obtained, and average CPU time 

taken of CLPSO method for the first three example 

problems. 
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Fig.3.  Fuel cost variation of example 3. 

Table VI: Generation output for 10-unit 24-hour system 

P/Hour 1 2 3 4 5 6 7 8 9 10 11 12 

P1 150.23 227.87 303.56 302.47 379.69 449.17 380.71 457.34 454.34 457.34 457.29 461.57 

P2 137.08 135.82 214.14 222.86 223.95 222.17 299.22 379.04 458.73 458.47 459.46 459.46 

P3 186.84 184.34 133.45 194.86 260.44 297.22 301.63 308.72 296.22 308.07 339.38 316.69 

P4 61.03 62.96 60.46 110.21 120.52 119.74 122.80 77.90 119.74 164.88 185.85 234.64 

P5 123.92 123.67 171.89 171.22 137.23 173.32 222.65 173.41 203.59 223.08 222.59 233.69 

P6 124.54 123.20 123.00 158.74 141.85 121.92 122.93 126.63 136.92 148.63 140.02 159.52 

P7 129.47 99.47 128.89 123.26 94.13 121.65 129.40 129.00 131.65 129.63 129.45 129.67 

P8 47.50 76.50 47.07 47.01 47.04 47.06 47.57 48.52 47.06 76.21 104.37 116.55 

P9 20.39 21.17 20.54 20.37 20.15 20.75 20.09 20.44 20.75 50.69 52.59 53.21 

P10 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 

PD 1036 1110 1258 1406 1480 1628 1702 1776 1924 2072 2146 2220 

Cost/h 28316.0 30514.9 33575.0 36927.9 38782.7 41506.7 43004.9 44973.0 48476.9 52276.3 54111.0 55903.0 

 

P/Hour 13 14 15 16 17 18 19 20 21 22 23 24 

P1 455.86 382.16 302.32 226.32 227.23 303.81 382.14 461.96 456.57 379.89 301.39 226.58 

P2 397.61 396.68 396.50 316.61 309.96 321.42 395.99 396.6 319.46 308.64 230.01 222.22 

P3 306.21 315.03 285.72 305.79 307.23 304.54 257.37 307.49 296.32 258.81 196.56 175.30 

P4 241.96 193.43 180.55 131.82 120.28 140.64 190.6 240.41 227.17 179.23 130.6 122.54 

P5 222.47 222.46 173.4 222.35 174.06 173.61 173.95 222.87 220.02 175.00 126.43 122.75 

P6 125.77 122.8 118.97 120.14 122.43 123.54 122.66 158.65 122.36 74.75 123.45 99.38 

P7 129.04 128.83 128.61 99.04 95.04 106.88 129.04 129.83 129.88 129.42 100.6 92.81 

P8 87.32 86.07 85.09 56.18 47.16 76.75 47.3 47.25 47.17 47.14 47.67 47.38 

P9 50.76 21.54 49.84 20.75 21.61 21.81 21.95 51.94 50.05 20.12 20.29 20.04 

P10 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 

PD 2072 1924 1776 1554 1480 1628 1776 2072 1924 1628 1332 1184 

Cost/h 51510.3 48164.0 44925.6 40435.7 38202.0 42368.9 45017.6 51565.6 48431.5 42002.3 35570.7 32174.0 

Total cost: 1028737$             CPU time: 988 sec. 
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Table VII: Comparison of minimum cost of various methods in 10-unit 24-hour system 

Method SQP EP Hybrid EP CLPSO 

Minimum  Cost ($) 1051163 1048638 1035748 1028737 

 
 

Table VIII: Statistical results of ED problems with sine function modeled nonsmooth fuel cost function (50 Trials) 

Test system 13 Unit System 40 Unit System 
10 Unit 24 Hour 

System 

Dem. (MW) 1800 2520  10500  9000  7500   

Max. Cost $) 18214.47 25682.61 123714.59 104721.65 90610.54 1071885 

Min. Cost $) 17972.92 24177.734 121527.172 103330.27 88532.14 1028737 

Avg. Cost ($) 18012.86 24812.39 122489.28 103991.52 89417.64 1050290 

Avg. CPU time(sec) 36.84 49.62 818.3 452.1 518.9 1012.6 

 

C. ED problems with prohibited operating zones 

In this example a test system which contains six 

thermal units are considered and all the six units 

have prohibited operating zones as well as ramp 

rate limits. The power loss is taken into account by 

the use of loss-formula coefficients. The input data 

is taken from [15].The system load demand is 1263 

MW as in [15]. Table IX presents the results 

obtained by the proposed CLPSO method along 

with the results of GA and PSO reported in [15, 22]. 

Table XI lists the maximum, minimum, and average 

costs obtained and average CPU time taken. Fig.4 

shows the fuel cost variation in this example. 

In the next example, a 15-generator system is 

considered, however, with only the units 2, 5, 6 and 

12 to have prohibited operating zones. The unit 

characteristics data, loss-formula coefficients are 

taken from [15]. The system load demand is 2630 

MW. As the ramp rate limits and the presence of 

prohibited operating zones restrict the operating 

range of units, the search area is getting reduced 

and even a small population size is enough for a 

global search. 

 

The parameters used in CLPSO method for these 

two examples are as follows: 

population size      50 

number of iterations   100 
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Fig.4.  Fuel cost variation of example 4. 

 

Table X shows the results obtained by the CLPSO 

method for this test case and a reproduction of GA, 

PSO results found in [22] for comparison. It is to be 

noted that, the dispatch levels of 6-Unit system by 

the CLPSO method are closer with PSO method, 

whereas they are at quite different levels in 15-Unit 

system, because, the presence of prohibited zones 

in all six units narrows down the solution space and 

in 15-Unit case their presence is available in only 

four generating units. Fig.5 shows the fuel cost 

variation in this example. 
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Table IX : Comparison of various methods in 6-unit 

system 

 

Unit CLPSO GA[15] PSO[15] 

1 445.9774 474.4970 447.4970 

2 173.4263 178.8066 173.3221 

3 264.1014 262.2089 263.4745 

4 139.3423 134.2826 139.0594 

5 165.4098 151.9039 165.4761 

6 87.1534 74.1812 87.1280 

Demand 1275.4106 1276.03 1276.01 

Ploss 
(MW) 

12.4106 13.0217 12.9584 

Cost ($) 15442.66 15459 15450 

CPU time 
(sec) 

6.78  21.31 14.89 
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Fig.5 Fuel cost variation of example 5. 

 
Table X : Results and comparison of various methods 

in 15-unit system 

 

Unit CLPSO GA PSO 

1 455.0000 455.0000 450.2978 

2 419.9997 440.0000 440.0000 

3 130.0000 119.1179 118.1179 

4 130.0000 117.9836 122.4839 

5 268.5836 270.0000 270.0000 

6 460.0000 324.8959 284.0404 

7 430.0000 314.1524 430.0000 

8 63.3506 140.3805 151.2743 

9 25.6830 113.2752 111.3938 

10 60.2372 128.6250 75.1117 

11 80.0000 63.2303 50.4559 

12 77.1371 44.1564 44.6579 

13 25.0000 77.2804 47.3174 

14 15.0000 25.7138 37.1838 

15 15.0000 34.0248 35.0895 
Demand 
(MW) 

2654.9912 2668.3 2667.4 

Ploss (MW) 24.9912 38.2499 37.3329 
Cost ($) 32560.92 33,149 33,020 
CPU time 
(sec) 

19.6  26.7 24.72 

 
Table XI shows the maximum cost, minimum cost, 

and average cost obtained and average time taken 

by the CLPSO method in the 6-Unit system and 15-

Unit system having prohibited operating zones. 

 
Table XI : Statistical Results of ED problems with 

prohibited operating zones  

Test system 6 Unit 
System 

15 Unit 
System 

Demand (MW) 1263  2630  

Maximum Cost ($) 15818.71 33191.63 

Minimum Cost ($) 15442.66 32560.92 

Average Cost ($) 15616.55 32866.73 

Average CPU time 
(sec) 

7.21 20.54 

6.  CONCLUSION 

In this paper, a new methodology, Comprehensive 

Learning Particle Swarm Optimization is proposed 

to solve ED problems. In this method, each particle 

learns from different exemplars for different 

dimensions for a few iterations. This learning 

strategy enables the swarm to overcome 

premature convergence. This method yields 

outstanding performance on ED problems of either 

static dispatch or dynamic dispatch. The proposed 

method is implemented in five example test 

problems having nonsmooth fuel cost functions as 

either in the form of sine function model into the 

objective function or with prohibited operating 

zones. The results of the proposed method are 
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compared with those of evolutionary programming 

(EP), genetic algorithms (GA) and simple PSO. From 

the results it is observed that the proposed CLPSO 

method performs better than GA, EP and PSO in 

terms of higher quality solution in non-convex ED 

problems. 
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